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Steady-state currents in sharp stochastic ratchets
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We develop and analyze a model for particle transport in a stochastic ratchet with a periodic piecewise linear
potential, with diffusion coefficienD, where the force is discontinuous in position and fluctuating in time via
additive telegraph noise with correlation time We find asymptotic formulas for the steady-state particle
currentJ for large and smalD and . For example, for smalt, the sharp corners in the potential leadJto
=0(7? exg — (DD Y3])+ O(7?), in contrast tad(7%) when the potential is smooth. We show that diffusion
can increase or decreadeand derive an approximate equation for the valu®dhat maximizes).
[S1063-651%9905810-9

PACS numbgs): 82.20.Mj, 02.50.Ga, 05.40.Jc, 87.1@

[. INTRODUCTION The first is the case where the force is constant in space; that
is, the driving noise is additivgl,16,18. An example of the
In recent years there has been a surge of interest in noiséecond case is when the shape of the periodic potential
driven ratchets: stochastic dynamical systems with asymmeghanges randomly in time; this is an example where the driv-
ric periodic potentials, driven by a time-dependent externaing noise is multiplicative3,19,2q. . _
force[1]. There has been speculation that biological systems There are two types of noise present in a ratchet driven by
take advantage of the interplay between thermal diffusior®" external ;tochast]c fqrce. The first noise stems from the'r-
and the fluctuating external force to transport molecules ofal fluctuations, which in the Langevin and Smoluchowski
vesicles[2-5]. Attempts have been made to use the prin-framework are described by diffusion. In other words, the
ciples of stochastic ratchets to design devices for separatidifffusion is the result of internal thermal interparticle inter-
of molecular or particulate moietid§—10. In the study of actions and follows the fluctuation-dissipation principle. It is
noise-induced transport, an important goal is to calculate th&ell known that such diffusion alone cannot perform useful
steady-state current of the system. If this is nonzero, it indiWork in the steady state. The second noise—the external
cates that useful work is being extracted from the externaforce—is usually taken to be a stochastic process with non-
force. zero correlation time. For example, in biological systems
At the present stage of research, it is necessary to writ&hese flut_:tuations may ar?se_from intermittent. chemical reac-
down relatively simple dynamical systems to model the veryfions which affect the d.IStI’IbutIOﬂ of electric char_ge and
complex biological or technological mechanisms. Thesgherefore alter the electric potential. These fluctuations can
models are studied in order to provide insight as to the interPerform useful work, since they are driven by an external
play between the parameters that affect the current: the di€Nergy sourcée.g., ATP molecules2,4,8,10. _
fusion coefficient, and the spatial and temporal structures of N this paper, we consider a two-state stochastic fluctuat-
the external forcing. From the solutions to such models, wd"g force model. In the liquidhigh damping phase, the
wish to learn how actual systems may work and might bediffusive dynamics of a particle in a thermal bath can be
controlled[6,7,9). For these purposes, we seek analytical in-éduced from the Langevin second order equation to the
sight deeper than can be provided by numerical solution$moluchowski first order equation. We consider one-
[11-13. Such insight is necessary because even simplgimensional motion, wh'ere t.he particle position is Qenoted
model ratchets display a rich variety of behaviors that varyPy X(t). Our nondimensionalized model for the particle dy-
markedly with the system parameters. Capturing the full@mics IS
range of these possibilities—and the transitions between . , .
them—as several parameters change is quite difficult with x(H)=-U (XH\/EW(UJF%:(U’ )
numerical solutions alone. ) o .
There are several categories of models for stochastiwhereU(x) is the deterministic potentialy(t) denotes stan-
ratchets. The temporal variations of the external force can b@a@rd Gaussian white noise, agt) is a stochastic process
a deterministic functiorusually periodid7,9,14), or can be independent ofv(t) [£(t) will be specified below
a stochastic process with nonzero correlation tirhgl5]. There are three time scales that need to be considered in
Stochastic forcing is usually taken to be a stationary Markovhese problemsThe very short time interval between ther-
stochastic process with a discrete or continuous state spatgal scattering events has been removed by the Smolu-
[4-6,11,12,15—-1B Two possible forms for the spatial struc- chowski approximation.The first time scale is characteristic
ture of the external force have received most attention: thef the force fluctuationsé(t). We denote this time scale by
“fluctuating force” and “fluctuating barrier” case$4,12]. 7. The second time scale,1/ is proportional to the time it
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atically and rigorously calculated. Some aspects of one-
Utx) dimensional dynamics driven by fast<€1) jump noise
have been studied previoudlgl], in the caseD=0. It was
shown that the correct asymptotic expansion is in powers of
7Y% however, in the case whetké(x) is smooth, all of the
q qp coefficients of fractional powers af in the expansion of
turn out to be zero. In the present model, it is necessary to
- retain the fractional powers af to get the correct current.
" The derivation of our results is straightforward in prin-
0 a 1 x ciple, but very lengthy in practice; the procedure we devel-
oped is outlined in Sec. lll. The results were checked using
FIG. 1. Potential in a typical periodic sharp ratchet. Hare direct numerical solutions of the fourth order polynomial,
—dr/(d.—dg), with slopes denoted by, andgg. (All variables  followed by numerical solution of the linear system of equa-
are dimensionless in this and other figuyes. tions for the steady-state probabilipfx, &).
We find that)= O(7? exf — (D7)~ ?]) + O(7*?) for small
takes a particle to diffuse a unit distance. The third time scale.. For D<O(1) as r—0, the first term is exponentially
is associated with the deterministic dynamics; this time issmall and the numerical prediction tha& O(7>?) is veri-
proportional to majl/|U”(x)|*?]. In any given model prob- fied. However, for larglD=0(1/7) asr—0, the first term
lem (1), the relationships among these three time scales aregfects the magnitude of Keeping this term is essential to
key factor in determining the steady-state particle current. ynderstand the dependenceJadn D in the smallr case, as
A case when the force fluctuations occur more rapidlyp changes from small to large. This result would be difficult
than the other two time scales has been studied by using obtain from purely numerical solutions, and illustrates the
asymptotic and numerical methofdsl]. In this problem, the  additional insight that analytical asymptotic methods can
steady-state current is proportional t6 as 7—0. The  pring to the solution of a problem. We also find that for small
asymptotic analysis breaks down when the dynamics time. there is a nonzero value &f that maximizes the current,
scale is significantly shorter than bothand 1D, since the and we derive an approximate equation for this Opt|ma|
coefficient of 7° diverges as maw’(x)|—e. This happens (28). These results show thdtcan be asymptotically larger
when the forceU’(x) changes abruptly over a very small for sharp ratchets than for smooth ratchets, and also show the
distance. In such a case, we say that the potential has a shaipnditions that are needed to obtain the maximal current.
corner. We model this corner as perfectly sharp, so that \whenD<1, we find that] is algebraic inD. The size of
U’(x) is only piecewise continuous. Numerical results indi-the current varies from transcendentally smalll) as
cate that with such a potential, the steady-state current ishanges from asymptotically small to large. The case when
proportional tor>? as 7—0, instead of ther® that occurs  poth D<1 andr<1 is where the order of the limiting op-

with smooth potential$18]. erations mattersD<r<1 is different thanr<D<1. The
We consider the Simplest such pOtential over the entirQransition between these two regimes occurs wHhen
real line, which is piecewise linear and periodic: =0(7)<1; the current is transcendentally small in this
limit. WhenD>1, the current vanishes algebraically aB4/
U(x) = qu(x=n) xe(natn) N0 4142 for arbitrary 7. These two limits are why there is & that
gr(x—n—1) xe(a+n,n+1) 77 produces a maximal current for small enoughiror largerr,
J is monotonically decreasing iD.
wherea=—qr/(q.—qg) (see Fig. 1L Without loss of gen- Biological systems have presumably evolved towards

erality we assume thaj, >0, qg<0, and we have set the maximum efficiency, and technological systems should be
period of the potential to be 1. We take the fluctuating forcedesigned to achieve maximum efficiency. Based on our re-
£(t) to be the zero mean symmetric telegraph process, takingults, we expect that the widely used sharp ratchet models
on valuest+ a with exponentially distributed switching times, will be found to be very applicable to scientific and engineer-
with parameter 1/(2). In order to ensure the existence of a ing problems, not just for the fact that such models can be
steady-state current, even in the absence of diffusion, we alssolved in closed form, but because they will also be excellent
assume thaa>maxq, ,|ggl}, so that the force alternates be- approximations to potentials found in the real world.
tween positive and negative.

The problem posed above can be solved in closed form,
with the solution expressed in terms of the roots of a fourth Il. FORMULATION OF THE SOLUTION
order polynomial(see Sec. Il Indeed, this is one reason
that thisU(x) has been widely used in previous modelingtio
efforts [1,4,12,18. The exact solution is algebraically very
complicated and gives no direct insight. We derive simpler
and more useful asymptotic expressions for the steady-state X(H)=—U"(x)+ \/ﬁ\}v(t)+§(t). )
currentJ for all four possible combinations d small and
large, 7 small and large(We keep the jump siza indepen-
dent of D and 7 in these limiting casesThe order in which The steady-state transition probability of the two-
these limits are taken is important in some cases. Theimensional procesgx(t),&(t)), p=p(x,&), satisfies the
asymptotic dependence &fn all of these regimes is system- forward master equation

The stochastic differential equation for the particle posi-
n x(t) is
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J Da2p 1W =0 3
—5[S(x)p]+ §+; p=0, ©)

where

SxX)=—-U'(x)I+

a 0
=—U'(X)I+ZE,
0 -a (x)

and the forward transition state matrix of the procéds is
given by

—1/2

1/2

1/2
-1/2]

.

We calculate the steady-state probability current in xhe
variable. Denoting byy "=[1,1] the left eigenvector oW,
corresponding to the zero eigenvalue, we have

a9
- —J=—YT

=0.
oX oX

D i

— S0P

Hence the currenl is constant inx and is given by
J=-YT

=const.

(4)

D(7p
x S(x)p

We study the dependence d&=J(D,7) on the diffusion

coefficientD and the mean time between the jumps 2
We solve exactly the master equati@) in each of the

constant force intervals (@) and («,1). Wedetermine con-

stants of integration by requiring continuity, periodicity, and

jump conditions. Denoting bg(x,q,) the solution on (Qy),
and byp(x,gg) the solution on &,1), we write these con-
ditions as continuity aty,

P(X=a,qr) —P(X=a,q.)=0; 5
continuity and periodicity ak=0,1,
p(x=10r) —p(x=00,)=0; (6)

the jump in the derivative op at x=0 andx=1 with the
periodicity of p,

p ap
D| o5 X=1ar) — -2 (x=040) | +(dr—qL)P(x=04,) =0;
(7
the steady state of the telegraph noise,
@ 1 1/2
f p(x,au)dx-+ f PO ARIX= 1l (8)
0 @

[Conditions(5—8) imply the jump condition ak= «,
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ap ap
D &(XZQ,QR)_OTX(X:“,QL) +(gr—qu)p(X=a,q,)
:O,

so this condition need not be explicitly usgd.

We denote byX;=[1,1]" and X,=[1,—1]" the right
eigenvectors ofW, with the eigenvaluesu;=0 and u,
=—1, respectively. We write the solution to the master
equation(3) as

4

p(x,qR(L)>=C?“>x1+i=22 CRLPRO) 9)

where pR®) is given byp; in Eq. (10) with q replaced by
ARr(L) »

Dpi+q
a

pi:(xl+ X2>exﬁpix), (10

and where{p;,i=2,3,4 is the set of nonzero roots of the
algebraic equation

1

1
D2p*+2Dqp3+|g®—a’— ;D}pz—;QpZO. (11)

We impose the condition&—8) to determine the eight con-
stants{CR(Y}. Using the fact thatr TX,=0, together with
the form (9) of the solution in Eq(4), we find that

J=-2qrCF=-2q,Cy.

We solve the system given by Eg&3), (5—(8) in the
asymptotic limits ofD<1, D>1, 7<1, and7>1. To this
end, in a specified asymptotic limit, we solve Efjl) for the
rootsp(") in the form of an asymptotic seriésee the Appen-
dix), write the solution(9), and then solve the system of
eight equations for the constar@§(") . These constants, and
hence the current, are functions of the parameie@nd 7
through exponential and preqgonential terms. The pre-
exponential terms are expanded in asymptotic power series;
the exponential factors are kept in this form throughout the
calculation, since they may be transcendentally large or
small. The asymptotic interplay between these exponential
and algebraic terms requires careful analysis. In particular,
the validity of an asymptotic formula for the current depends
on the validity of the asymptotic expansion of the roots of
Eqg. (11). Though the procedure of finding the solution may
seem to be straightforward, its implementaticiescribed in
Sec. Il below is nontrivial.

This procedure can be generalized to calculate asymptotic
expansions for the current in an arbitrary periodic nhonsym-
metric sharp potential. The first step is to find the asymptotic
solution to the master equati@8) on each interval where the
force is continuous. The form of this expansion depends on
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the chosen asymptotic limit. For examplesi&1 we seelp k+1 files, so that thepth file contains the coefficient of the

in the WKB form p=exd — ¢/ \/r]k [21]. For the caseD pth power of the expansion parameter. This coefficient is
<1, p also has a WKB fornrp=exg —¢/D]k. Then con-  Written so separate lines of the file contain its separate sum-
stants of integration are determined by employing the perimands. After all 1440 terms in the determinant sum are pro-

odicity, continuity, and marginal conditions analogous tocessed in this way, the coefficient of tijh power of the
Egs. (5)—(8). expansion parameter can be obtained by adding up all the

lines of thepth file. In some cases, these files contain over
2% 10° lines, so it is impossible to carry this out directly
IIil. SOLUTION METHODS within MAPLE v due to program limitations on the complex-
We performed symbolic and numerical calculations using® ©f @lgebraic expressions, and also due to the amount of

MAPLE v (Waterloo Softwarg running on a 400-MHz Pen- intermediate memory needed; this is the motivation for com-

tium Il Linux-based system. The symbolic asymptotic Solu_puting the expansion of one determinant term at a time and

tions were checked against direct numerical solutions Com(_:ollecting its coefficients into filestWhen adding up the

puted with up to 50 significant digits. Such precision Wascoeffluent files directly, at about 30000 lines the system is

= . overwhelmed and all available memory—in this case about
necessary when multiplying gxponeanlly large and EXpO360 megabytes—is exhaustedilany of the expressions in
nentially small terms. Symbolic calculations took from min-

the files would cancel or combine if added directh.g.,
utes to days, and had to be organized carefullyvMapLE v 3abct - .- +7abct - - - +2abe where there mig(r?t/gbe

to be able to handle their complexity. _ _ thousands of terms hidden by the ellipsé&/e developed a
~We solved the systerf(5)—(8)] of eight equations with  technique to add up such large expressions, under the as-
eight unknowns, representing the amplitudes of the four elsymption (or hopé that they will eventually collapse to a
ementary solutions to Eq(3) in each subinterval. After manageable set of terms. We sort each of the files by lines in
simple row operations the matrix of the systéhhas the the normal alphabetic ordefoutside MAPLE Vv, using the
structure Unix sort utility). Then we read a file intsAPLE v and add
all these ordered lines up, one at a time. The sorting tends to
bring like subexpressions close together so that combination

(1 mp Mgz My —1 My Mz Myg] or cancellation can occur before the sum becomes too bulky
0 My Mz My O My My Mg fo'r MAPLE Vv to handle. There is sufficient cancellation with
this method so that the system memory does not become
0 mg Mgz Mgy Mgg M3z Msg exhausted. Adding up 2108 lines in this fashion takes
0 my mMyz My 0 My My Myg about 24 CPU hours. As will be seen below, in most cases
M= the final expressions are vastly simpler than the intermediate
0 ms; Mgz M5y Mss Msg M5y Msg P y P
results.
0 mg; Mgz Mgy Mg Mgz Mgy
IV. NO DIFFUSION (D=0) AND SMALL DIFFUSION
0 myp; Myz My, Mze Myzz Myg ( )
(D<1)
O mg; Mgz Mgy O Mgg Mgy Mgg]

In this section first we calculate the current in the case of
no diffusion,D=0, and then study how small diffusiob,
and the right hand side s=[0, . .. 0,1,0]". We solved the <1, affects the current. In the caBe=0, we first solve the

systemMc=b using Cramer's rule, whereis the vector of ~Master equatiof3) to find
the CRV coefficients.

For illustration, we describe the symbolic calculation of R(L) Ry @
defM]. This determinant has 1440 terms, each being a prod-P(%:dr)) =C1 X1+ C; OriL
uct of six or seven of then;; ; this expansion is easily cal-
culated withmAPLE Vv in terms of the generioy; . In each of
the asymptotic limits considered(small and larges small Where)\R(L)=qR(L)/[(qﬁ(L)—az) 7]. We calculate constants
and large, we construct the asymptotic expansion of the en-of integration by requiring the jump condition at
triesm; in powers of the expansion parameterdr D). For =« Sa*)p(at,gr)—Ha )p(a~,q.)=0, and the sta-
each of 1440 terms we substitute these expansions of th@®nary marginal transition probability of the noise, as in Eq.
m;; , and collect the coefficients of each of the powers of the8). (This jump condition together with Eq.(8)
expansion parameter. From each term in the determinamnd the periodicity op [i.e., p(x=1",q,)=p(x=07,q,),
sum, each coefficient in the expansion is fully multiplied outp(x=0",qg) =p(Xx=1",q9r)] implies the jump condition at
(often yielding an expression with dozens of teymfhe x=0/1 is S(17)p(1~,9g)—S(0")p(0*,q.)=0.) Then we
coefficients of each power are appended to an output filegalculate the currenf(D=0,7)=Jp,ero(7) = — Y S(X)p, to
when calculating the expansion up to ordemve construct find

)Xl+ Xo | eXpNr(L)X),

— AT [exp(Agar) —exp(Ng+ A )]
(Ar+au)[expAra) —expAg+ A )]+ 7a(qr—dL) [exp(h @) — L] exp( A gar) —exp(Ap)]

Jpzerd 7) = (12
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We note that whemggr— —q, (the symmetric potentigal 2.2

Jpzero(7)—0. In the asymptotic limit of slow jumps whose Jbozerd 7) = > R Ze)‘La[l—l—O(e}‘R(a’l))]
size isO(1), (i.e., whenr—x) we have Ta (dr—0L)
(14
dLdr(dL+ar) 1 1 =Jpzerd 0)[1+O(eMRle 1], (19
Jbzerd 7) = —2 O(_>EJDzero(°°)+o _) ) o ) )
a’=(qL+qgR) T T As 7 increases, the current increases from exponentially
13 small values in 1/ to a value algebraically close to a con-
stant.
In the asymptotic limit of fast jumps dd(1), (i.e., when In the diffusion limit of £(t) (i.e., fast large jumps with
7—0), we find thatlp,e,, IS €xponentially small in: r=€%1, a=ale, and €—0), we have
|
(0L + 0r) AL O €XH — Orar/ D)
Jpzerd 7)= ~62 2 +O(63)
“ 3 ?(aL— qr)’[eXp( — gral/ D) —exp — dr /D) [exp —qLa/ D) — 1]
=380 0Le)
|
whereD="7a? is the effective diffusion coefficient. IO o(0,7). The exact formula ford(:).5(0,7) is ex-

We next consider the case 8f<1. Nonzero diffusion tremely lengthy(many pages so we show its graph and
has singular smoothing effects on the system. While the masstudy its asymptotic properties in. For 7>1 [§(t) is a
ginal transition probability function ix of Eq. (2) with D slowly changing telegraph procédssve find
=0 suffers discontinuities at the points where the force is

discontinuous, the marginal transition probability in the case 3 0 ) (—qL+aqr)%(grtqL)a o 1
of D#0 is smooth; see Fig. 2. Jsmaip(0.7) = (AL + Art )20, + dr—a)2 T
Effects of smallD on the current are singular in a differ- LTHR LTHR (19
ent manner. We find the current
1
Jsmanin(D,7) = Ipzerd 7) + DI a1p(D, 7) + O(D?), =30 5(0)+0 )

(16)
whereJdp,eroiS exactly the zero-diffusion current {@2). We  while, for 7<1,
find
(af+a®)aray

I (D, 1) =38 00,0 +0(e¥P).  (17) IR ain(0,7) =

a’(gr—qu)3(—aq +a)*(a+qy)?

1)
7_2

Figure 3 shows the graph of the analytical formula for

+0| = | |ewela-a97(1+TST), (19)

0 0.2 0.4 0.6 0.8 1
X

FIG. 2. Marginal transition probability fog, =3/4, qg=—1,
a=2, whenr=1 and variousD. Short dashesD =1; dashesD FIG. 3. Graph of J{).,5(0,7) vs 7 for q =3/4,qr=—1,
=0.1; solid line,D=0.03; boxesp =0. a=2.
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where TST denotes a transcendentally small term. Here weurrentJ is a decreasing function dd. Hence for+ suffi-

have ciently small, a little bit of diffusion increases the current,
. . but a lot of diffusion diminishes it.
TST=0(max e~ I /(A ~R(AR=a")7] g2aLe/l(dL~a%)7]T), The analysis of this section is valid for values ofuch

that >D. To see this, we note that the terms in the

[In the derivation of Eq(19) we explicitly assume thad, asymptotic formulas for the roots in EGA1) depend on the
# — (g When we disregard exponentially small terms. This isquotient D™~ /7™ We explicitly assume thaD<1 and
why Eq. (19) does not reduce to zero whep+qr=0, al-  higher order(disregardepiterms are asymptotically smaller
though the exact formula fai{}),,5(0,r) does simplify to ~ than those kept, which implies>D. The range of validity
zero in this casg. of the asymptotic expansion is important to keep in mind

For a fixedr<1, the currentlgao(D,7) (as a function wher_1 taklng the iterated limit dD <1 and_r_«l. The result
of D) approaches a transcendentally small value with a tran(16) iS valid for D<1 and7>D. The validity of the result
scendentally small slope & 0. We note thagl) _(0,7)  Preaks do(vlv)n when=0(D) or smaller.
takes on positive values for<1, according to Eq(19), Since Jgpap Can be negative, (_)ne.mlght be te(mpted to
while it takes on negative values fee>1, according to Eq. postulate current reversal; by adding just enougkisﬂﬁa”D

(18). Hence there are values* and 7** such that "? Eq.(16) toJDzem_in Eg-“z)—t_h?‘t s, byselec_:ting the just
‘J(Dls)maII(O'T)>O for r<7*, and ‘](Dls)maII(O!T)<O for = right value of the diffusion coefficierid—one might be able

~ %% Numerical evaluation of the exact formula for to change the sign of the current as a functiorr.dflowever,

(1) *_ k. . this only happen for values of<D, when the above asymp-
‘].Sma”D(Q’T) suggests tha 7, compare _F|g. 8. I_n the totics are not valid. We do not observe current reversal in our
discussion below we assume that this holdse.,

ratchet model.
JE .(0,7) has only one zero fore (0,)]. In Sec. VI we

show that asD—«,J(D,7)—0. For a fixed value ofr V. FAST JUMP NOISE, r<1

<7*, the slope ofJ(D,7) is positive forD<1, andJ is an ] o
increasing function oD, while for D>1, J is a decreasing In the case ofr<1 we find that the current is given by
function of D. HenceJ achieves a maximum as a function of Jeman( D, 7) = 7234+ 79215+ O(73). (20)

D, if 7<7*. We conclude that for each<7*, there is a
value of D which maximizes the current. For>7*, the  The coefficientsl, andJs are given by

_ a1/(VDV7) 2a/(\D\7)) p—qLa/(2D)
J=——22a2( e +e e
4=5 DSquR

(equa/D_ 1) ea/(\fﬁd?)(el/(\fﬁ\f?)_ 1) ! (21)

JSZZ D_Y/ZanEqéf( _ qLe4a/(dﬁ\e'7')f_ qL82(1+ a)/(v“ﬁv“;)f_,r_ qLeZQ/(Gﬁd;)f_;r_ qLeZ/(\““ﬁ\s‘;)f_ qLe(l+ a)l (VD7) + qLe(l+3a)/(v“ﬁv“7)

+q e(t30/(IDMgaLalD_ g g(1+a)/(D NgdLalD_ g e2/(DV7) £y g2+ a)/(\DV7) _ q_g3a/(DV7) 1 q_g2a/(\DV7)
_ qRez(1+ a)/(\sﬁﬁ)]_ur qRe(2+ @)/ (VD7) g /D | qRe4a/(\s‘m?)}-_ qResa/(\fﬁ Fr)eqLa/D)/[eZa/(\fﬁﬁ)

X (el/(\fﬁ V7) _ 1)2( —1+ eqLa/D)Z]

where F=¢iL«/(2D), where
In general, the coefficienl, is exponentially small in/7.
Specifically, if —gg>q, then we have ) 11 edLe/D
. . 152—2—7Q(QL+QR)Q§QE32W, (23)
J4:j4e(a71)/(\s“DT)[1+O(e(172a)/(\s“DT))], D (—=1+ehe®)
al(2D alD
where j£'§=£ iazqﬁqfem (2D)(1+ e ),
11 2 s eULdr/[2D(aL —qR)] 4 p™2 (_1+eqLa/D)2
Ja=5 3 di0gga — : (22
2 D3 (equR/[D(qL QR)]_]_) R 1 1 ) 2 3e(1|_a/(2D)(1+eqLa/D)
. I jo=——=a
The nonexponentially small contribution Jaomes from the 1573 D72 dRAL (—1+edLa/Dy2
coefficientjs defined below. Rearranging the termsJinwe
find Hence with a transcendentally small error we have

J5:j5+j5efa/(\f‘DT)+jEe*(lfa)/(vDT)_i_TST, JsmaIIT(DvT)zj575/2+O(T3)' (24)
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We note that the analysis of this section is valid fex1 and
values ofD which satisfy the condition® r<1 andD> 7.
The first of these conditions results from the asymptotic ar
rangement of terms when solving the system of linear equ
tions (5)—(8). The second condition stems from the assump
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VI. SLOW JUMP NOISE (7>1)

We solve Eq(11) in the asymptotic limit ofr>1, while
keepingD fixed. For the asymptotic formulas, for the roots

in Eq. (A3) to be valid we must have alse>D. We calcu-

late the current to obtain

tion that higher order terms in the expansion of the roots in

Eq. (A2) are asymptotically smaller than the lower order
terms which are kept in the calculations.

Up to this point, in this section we have assumed fhat
=0(1). If we assume thab<1 (while D>7), thenJ, in
Eq. (21) is exponentially small, both im andD. Specifically,
we have

11

2 p3
X[1+O(edar/[D(aL =R,

J,= qfqéaze*QLQR/[Z(QL*QR)D]e*QL /[(a.—ar)VD7]

andJs, or equivalentlyj 5, becomes exponentially small
Hence in the iterated asymptotic limit<1,D<1 the current
is exponentially small irD, and

TS/Z
Jsmaik( Dy 7)= = 57501+ OR) R 2% €XP(— G/ D)

|

We emphasize that the iterated limits<1, D<1 and D

5/2
T equa/D

D7/2 (25)

+0(T3)=o(

<1, 7<1 are not interchangeable; compare the result Eq%Nhere‘]Dzero(m) and J

(16) with (15) and(19).
If D>1 then

a?(q.+qr)(aL.—qr)?+0

J5= 4 pae

1
D_m) , (26)

so that we have

5/2

‘]smallr(DaT):_4 az(qL+qR)(qL_qR)2

D 3/2

(27)

|

We observe that for a fixed<1, the dependence of the
current,Jsman(D,7), on D changes from exponential to al-
gebraic ad varies from values asymptotically small to as-
ymptotically large. AD increases, the current increases first
through exponentially small values, it achieves its maximum
and finally decays algebraically to zero. According to Eq.
(23) the maximum value of the current is achieved for the

D 3/2

value of D which is the solution to the transcendental equa-

tion
20, qr(1+e%P)—7D(q —qr)(1—e™P)=0. (29

This equation predicts the current-maximiziBgwith a pre-
cision determined by the asymptotic calculations.

(0) 1
‘]Iarger(DrT)learger(D)+O e (29
The exact formula for the leading order ted{f)..(D) is

lengthy (about one page and by itself does not give any
insight. To get more information we study it in asymptotic
limits.

If D>1 then we have

1 1 a’qlg(a.+ar)

(0) _
D* 360 (q.—qr)*

larger

JO (D)=

1
+O(§), (30
so that the current decays to zero algebraically at a rate in-

dependent ofr.
If D<1 then we have

1
‘]Iarger(D) =|JIpzerd®) + DJ(slrrZaIID(O’OO) + O( DZ’;) }

X[1+ O(e*a/D,eqR(a*QL)/[D(QL*QR)] ,

e*QL(QRJra)/[D(QL*QR)])], (31)

{haip(0=) are given by Eqgs(13)
and(18), respectively. Hence the iterated limits o1 and
D<1, andD<1 and>1 give the same results; they are
interchangeable.

In the asymptotic limit of 71 the telegraph noise
changes slowly, staying in each of its values on average
for times of length 2. As r—« one of the levels of the
noisea or —a is selected with probability 1/2, and the cur-
rent J is the averagdwith respect to the stationary noise
distribution of the two currents obtained from the dynamics
(2) with ¢=a or {=—a. So, to leading ordew,ge(D,7)
is independent of, as shown in Eq(29).

VIl. STRONG DIFFUSION (D>1)

Asymptotic expansion of the roots of E(.1) in the case
of D>1 is valid for 7> 1/D; compare Eq(A4). In this case,
the exponential terms which depend ob an be expanded
in power series, so that the entries of the matBix-(8) can
be represented by asymptotic series in powers bBf. We
calculate the current as

1

1 1 a’qq3(a.+ar)
g —ad 1Ol

D360 (g —qgp)’

JIargeD(DaT):
(32)

We note that to leading order the larBeresult is exactly
the same as the result of the iterated limit 1 andD>1;
compare Eq(30). The asymptotic limits oD>1 and>1

are interchangeable. If the jumps are not too frequent (
>1/D) then the strong diffusion smoothes and smears their
effects, so that the current vanishes algebraicallpiat a
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rate independent af. This is in contrast to the case<1 and VIIl. DISTINGUISHED LIMITS

D>1/r, when the current decays algebraically to zero in

5 The results of Secs. IV and V show that the iterated limits

D %2 at a rate proportional t&®? compare Eqs(26) and ;

; ’ D<1 and7r>1 are interchangeable. In contrast, the results
(27). It we take 7=D in Egs. (26) and (27) then Jsmair  of Secs. IV and VI show that the limits<1 andD>1 are
=O(1/D%), but the numerical factors in Eqe32) and(27) ot interchangeable. We now show that E0) is valid

are different. Higher order terms in powers=oin the series  ynjformly for D> 7, including D=0(1/7) and D>1/r. In
for Eq. (27) are needed to account for all terms®{1/D*)  particular, we show how Eq32) carries through the distin-
whenr=1/D. guished limit of 7=1/D to the regimer<1 in which Eq.

If 7<1/D then the current is asymptotically smaller than (27) holds. To establish this result we substitu@2
O(1/D%), according to Eq(27), and it decays algebraically =1/(k?7) in Eq. (20) and then expand in a Taylor series in
in 7 andD. powers ofr to obtain, to leading order,

qA(—2EfEg—Ei+e®™EZ— 1+ 2Ex+E{ER)
E2
R

1 1
Jsmallf(E_,T) =— Z(qL_QR)k3a274 -

- qZ(—1—2E E3—e’E3+2E, + EZ+EZE3)

ER
+2quR(_1+ELER)(ELER_2EL+k E . —kEr—Egr+1) /(ek_l)Z' (33)
Er
[
where o q D q(q?+a?) D2
kay kar P T a?) 2 (gP-ad)? =)
E =ex and Egr=ex :
qdL.—dr dL.—dr
—gqta 1 1 1D atq

If k=1 then Eq.(33) is the distinguished limit result of p®=
7<1 andD=1/7. To obtain the expression for the current

+_ _————_—_
D 27(—qta) 84;2(-g+a)’a

for the values oD even larger tha®(1/7) we now take the D2
limit as k—0 in Eq. (33) to obtain +0 =/, (A1)
;
1 o ,000za°(gr+aL)
Jsmallr,largeD:ﬁ)k T 4 - (34) 2
(qL—dRr) (@)_ gta 1 1 1D —g+ta D
PUST D T 27a+a) B 2arqa O\ A
Recalling thatD = 1/(k?7), formulas(32) and(34) are iden- T a T
tical. _ o )
The limits 7<1 andD<1 are also not interchangeable. 1his €xpansion is valid for>D. .
The transition between the resultd9) (iterated limit D _In the asymptotic limit ofr<1, the asymptotic expan-
<1,7<1) and(25) (iterated limitr<1,D<1) occurs when Sions of the eigenvalues are
D=kr, wherek=0(1). Thecurrent is exponentially small,
J~exp(—«/D), with « being proportional to the smallest a’q a‘q
(positive) root of the cubic equation p®=—q/D+ 52 ng +0(7%/D%),

kY3+2qY?+(g®—a?—k)Y—q=0.
1 1q 1qg°+4a?

[ 2
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p@=—— -3 3728 o2,

/or 2D 8 p3

We denote byp®@=0 the zero eigenvalue of Eq1ll), This expansion is valid fob> r.
and seek the expansions of the other roots of(E#). in the In the asymptotic limit ofr>1, the asymptotic expan-
various asymptotic limits. In the case<® <1, we obtain sions of the eigenvalues are

APPENDIX: ASYMPTOTICS OF EIGENVALUES
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2, 42 2 2
p(2):1 a  Da@+a) b7 p(2)2_3+i_q+ ( L
Tq2—a? 72 (q?—a?)? 3 D p2 7 D32
@_—9+a_11 1 1D gra (D7 1 1q [ 1
PP="D T279-a 82(g-aca |\ 2) p= —5p 1O , (A4)
q (g—a)’a T /Dyr 2D D32/;
(A3)
jo__dta 11 1 1D g-a_ (0? L ]
D 2r7Qq+a 8 72 (q+a)3a 3 \/5\/; D \/;
This expansion is valid for>D. In the actual calculation&f. Sec. lll), these expansions are
The asymptotic expansion of the eigenvalues in the caseeeded to higher order, so that thg; are calculated with
of D>1 is valid for > 1/D, and is given by sufficient accuracy.
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